《编程之美: 求二叉树中节点的最大距离》的另一个解法

昨天花了一个晚上为《编程之美》,在豆瓣写了一篇书评《迟来的书评和感想──给喜爱编程的朋友》。书评就不转载到这里了,取而代之,在这里介绍书里其中一条问题的另一个解法。这个解法比较简短易读及降低了空间复杂度,或者可以说觉得比较「美」吧。

问题定义

如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义”距离”为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。

书上的解法

书中对这个问题的分析是很清楚的,我尝试用自己的方式简短覆述。

计算一个二叉树的最大距离有两个情况:

  • 情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
  • 情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。

只需要计算这两个情况的路径距离,并取其大者,就是该二叉树的最大距离。

我也想不到更好的分析方法。

但接着,原文的实现就不如上面的清楚 (源码可从这里下载):

这段代码有几个缺点:

  1. 算法加入了侵入式(intrusive)的资料nMaxLeft, nMaxRight
  2. 使用了全局变量 nMaxLen。每次使用要额外初始化。而且就算是不同的独立资料,也不能在多个线程使用这个函数
  3. 逻辑比较复杂,也有许多 NULL 相关的条件测试。

我的尝试

我认为这个问题的核心是,情况A 及 B 需要不同的信息: A 需要子树的最大深度,B 需要子树的最大距离。只要函数能在一个节点同时计算及传回这两个信息,代码就可以很简单:

计算 result 的代码很清楚;nMaxDepth 就是左子树和右子树的深度加1;nMaxDistance 则取 A 和 B 情况的最大值。

为了减少 NULL 的条件测试,进入函数时,如果节点为 NULL,会传回一个 empty 变量。比较奇怪的是 empty.nMaxDepth = -1,目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0。

除了提高了可读性,这个解法的另一个优点是减少了 O(节点数目) 大小的侵入式资料,而改为使用 O(树的最大深度) 大小的栈空间。这个设计使函数完全没有副作用(side effect)。

测试代码

以下也提供测试代码给读者参考 (页数是根据第7次印刷,节点是由上至下、左至右编号):

你想到更好的解法吗?

3 条关于 “《编程之美: 求二叉树中节点的最大距离》的另一个解法” 的评论

  1. 我有一个想法,仅限于理论,说出来大家讨论讨论。

    采用类似于Huffman编码的方法,对每个节点进行编码。
    例如,对于题中最先提到的二叉树,可以编码如下:
    0
    00 01
    000 001 010 011
    0000 0101

    那么该树的最大距离可对所有叶子节点之间、叶子节点和根(链式树)之间按如下方式计算,
    节点1:0000 节点3:0
    节点2:0101 节点2:0000
    节点1与2:其中从左至右,第一个不相同的是第二位,那么从不相同的位(包括该位)开始每个节点都计算其剩余的位数(如果每个节点的位数不尽相同的话,也仍然这样来计算)。剩余位数节点1余3位,节点2余3位,它们的和为6,则节点1与2的距离为6;
    节点3与2:同样从左至右,第一个不同的是节点2的第二位,剩余位数节点3余0位,节点2余3位,它们的和为3,则节点3与2的距离为3.
    经过这样的计算,总和为6.

    解释:其中第一个不相同的位数是这些节点的第一个公共祖先(包括父亲)节点,而该不同位后剩余的位数便是该节点相对公共祖先的深度,相应的最大距离一定是包含这些长度的。

  2. 详细的看了你的方法,确实是一个不错的思路。
    空间复杂度是O(n),时间复杂度是O(N*N*LogN).

    空间复杂度和时间复杂度上都比原算法差了一些,不过思路挺好的。

发表评论

电子邮件地址不会被公开。 必填项已用*标注